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INTRODUCTION

In 1977 DeVore [5] obtained Jackson-type estimates for the approx
imation of monotone functions by. monotone splines. Since then various
authors [1, 4, 7] have considered extensions of the problem and
improvements of the results or the methods of proof. Recently Beatson [3]
has introduced an economical method of estimating the rate of monotone
approximation by splines by means of similar estimates on the rate of
restricted range approximation.

The purpose of this work is to obtain Jackson-type estimates for the
approximation of a piecewise monotone function f; i.e., f changes its
monotonicity finitely many times in the interval, by means of splines which
are comonotone with it. We apply some of the methods that were introduced
by Beatson [3] and obtain estimates that involve the modulus of continuity
of the highest continuous derivative that f possesses.

It is interesting to compare these estimates with what is known for
comonotone approximation of piecewise monotone functions by polynomials.
In this case the only estimates known involve the modulus of continuity of
the function itself. These have been obtained independently by Iliev [6] and
Newman [8] and no progress has been made since then.
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We consider continuous functions on [a, b] that are piecewise monotone, i.e.,
change direction from increasing to decreasing or vice versa finitely many
times, say, r ~ 1, in [a, b].

Let T:a=to<t\<···<tn=b be a mesh on [a,b] and for k~llet

/:I'(k, T) denote the space of splines of order k with knots T, Le., s E Y(k, n
if and only if s E e(k - 2) [a, b] and s is a polynomial of degree ~ k - 1 on
each interval [t;_I,t;], i= I, ...,n. Sometimes in order to relate splines in
adjacent intervals we will take for T an infinite sequence of strictly
increasing knots {t;}~_<X) and Y(k, n will mean the obvious (modified)
space of splines on (inf t;, sup t;). Back to our original mesh on [a, b], if J =
max\<;;;<;;n (t; - t;_I) denotes the mesh size and if w(f, .) denotes the usual
modulus of continuity off, then we prove the following

THEOREM. For k ~ 1 there is a constant e = C(k, r) depending only on k
and r such that if fE Ci[a, b] for some 0 ~j ~ k - 1 is a piecewise
monotonic function with r turning points, then there exists an s E Y (k, n
comonotone with f such that

II f - s II ~ ecY w(fU), c5).

For the proof we need two auxiliary lemmas due to Beatson [2].

(I)

LEMMA 1. For j ~ 0 let 'lri denote the space of polynomials of degree Q.
Let l(x) and u(x) be two extended real valued functions on [a, b] and set

w = {g E C[a, b]: l(x) ~ g(x) ~ u(x), a ~ x ~ b}.

Suppose that f E ej [a, b] n Wand that 1Cj n W is not empty. Then there
exists a polynomial p E 'lrj n W such that

Ilf- pll ~ (b - ay w(jU), b - a). (2)

LEMMA 2. Let k ~ 2 be an integer and d = 2(k - 1) 2, and let
T: {til~ _<X) be a strictly increasing knot sequence with to = a and td = b. If
PI and P2 are two polynomials of degree ~k - 1, then there exists a spline
s E Y(k, 1) such that s(x) is a number between p\(x) and P2(X) for each
xE [a, b] and

s(x)=P\(x) on (-O'J,a], s(x) = pix) on [b, O'J).

Proof of the Theorem. The main part of the proof will involve a
construction of a suitable spline approximating the derivative of f and then
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integration. Therefore we will first assume that j ~ 1 and will deal with the
case j = 0 at the end. Let n > 2d (where d = 2(k - 1)2) and define the points
xi=tid'i=O,l, ,m, where m=[n/d] and xm+l=tn • Now let I i =
[X"Xi+2], i=O ,m-l. If I' is of fixed sign on Ii let the polynomials
P/i' Pui E 7Cj _ 1 satisfy

and

o~ P/i ~I' ~ Pui

P/i~1' ~PUj~O

on Ii if l' ~ 0 on Ii'

on Ii if I' ~O on Ii' (3)

for example. Also for each collection liB' = U;'~u Ii' 0 ~f.L ~ v~ m - 1,
define the polynomial PUL' E 7Cj _ I such that

and

min(f', 0) ~ PUL' ~ max(f', 0) (5)

(6)

The existence of these polynomials is guaranteed by Lemma 1. (In all three
cases the function I' to which we apply the lemma and the polynomial p == 0
belong to the respective W as required.)

We divide the intervals Ii' 1~ i ~ m - 1, into intervals of two types. The
interval Ii is of type I if i = 0 or if I' changes sign (at least once) in
Ii _ I U Ii + I' Otherwise it is of type II. Employing an idea of Beatson [2] we
now define the required spline s E Y(k, T) inductively starting with i =O.
Let I", f.L >1, be the first interval of type II. (If there is none, then
f.L=m + 1.) Then define s' =Pou on [a, x,,] and s(a)=f(a), and define
gU-I=Pou on IU_I' Suppose that sex) is defined on [a,xv]v~m and the
polynomial gv_I is defined on I L,_" let us extend s onto [XL" x" + I] (or onto a
bigger interval) and get another polynomial g. If v = m define s' = gm _Ion
[xm,xm + I ]. Assume v < m. If I

L
• is of type II thenl' has constant sign there.

On I" define gv = PUL' if f(xv) ~ s(xJ, and gL' = Ph' if f(xv) ~ sex,,). Now
define s' on [Xv,xv+l ] as the smoothing spline between gv-l and g,. which is
obtained from Lemma 2. If on the other hand I,. is of type I, then let I p be
the first interval of type II. (Again if there is none, then p = m + 1.) Define
gv = Pvp on Iv and gp-l = PL.P on Ip_I' Now define s' on [x,., x,.+ II as the
smoothing spline between gv-I and gv and s' = Pvp on [xv+" x p]. Finally
sex) = sea) + t s'(t) dt is a spline in Y(k, T) which is comonotone with f
and we only have to show that the error estimate is valid. To this end we
observe that since there are at most 3r + 1 intervals of type I (the additional
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I is due to the fact that lois treated as being of type I in any case) then it
follows by (4) and (6) that on [a,b]

11f'-s'II~(3r+ Iy-I e.

Hence if E =f - s is the error function, then

liE' Ilra.bl ~ A(k, r) e,

where A = (3r + I)k-I. Thus for x, y E [Xi' Xi + I] we have

IE(x) - E(y)1 ~ A dOt>. (8)

Since there are at most 3r + I intervals of type I, 3r of which come in
overlapping triples, the total variation of E on these intervals is bounded by
2A (2r + 1) d&. On the other hand if I v is an interval of type II and I jJ. is the
closest interval of type I to the left of I" (here too lois treated as if it is of
type I), then we will show that

IE(x)1 ~ IE(xjJ.) I+ 2Adot>, (9)

This, in addition to the fact that E(a) = 0, yields, for all X E [a, b],

IE(x)1 ~ 4A(r + 1) doe

~Cot>

= C~ w(f(j)o)

and (I) is evident with C = (3r + I )k-I(r + 1)2k+ 1 dk.
In order to prove (9) observe that if IE(xJI ~ IE(xjJ.) I+Ad& then (9)

follows by (8). Thus assume IE(x,.)1 > IE(xjJ.) I+ Ad&, which in turn implies
that v>f.l + 2. This means in particular that v-I > f.l so that I" _ I is also of
type II. By virtue of (8)

E(x) E(x,.) > 0, xE 1"_1, (10)

and the construction of the polynomials g,'_1 and g,. imply that (f'(x)
gV_I(x»E(xv_I)~Oon I v- 1 and (f'(x)-g,.(x») E(x,,)~O on I,.. Now by
(10) g,,_I(X) and g,,(x) are on the same side of f'(x) for xE [X",XHI ],
hence so is s'(x). Since E(x) *°on [XV'Xv+ l ] (again by (10», it follows
that IE(x)1 is nonincreasing in [xv, X,.+ J!. The argument applied here is valid
for any interval I p' f.l <p < v where
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so we work our way from # to v. If p is the first index for which this
inequality holds, then

and by virtue of (8)

Also, by the discussion above, IE(x)1 is nonincreasing in [xp,xp+1l so that
(9) holds there. If IE(xp+i)1 > IE(xJI+Ad& we continue the downward
trend so that (9) holds in [xp+l' xp+2 ] and if IE(xp+i)1 ~ IE(x,JI +Ad&
then (9) holds in [x

P
+l'xp+21 by virtue of (8). Finitely many steps bring us

to [Xl',x"+il.
If n ~ 2d, let P E 7rj _ 1 satisfy

min(f', 0) ~ P ~ max(f', 0) on [a, b],

11f' - PII ~ (b - aY-1 w(fU), b - a).

Such P is guaranteed by Lemma 1. Define sex) = f(a) + J~ pet) dt, then s is
comonotone with f on Ia, b] and

Ilf- sll ~ (b - aY w(jU), b - a). (11 )

Since b - a ~ nb ~ 2db, (11) implies (1) with C = (2d)k + 1 and our proof for
j ~ 1 is complete. The case k - 1 = j = 0 is trivial.

We conclude with the case k - 1 >j = O. Given fE qa, b] having r
turning points in [a, b] we will construct a IfI Eel [a, b] having the same
turning points which is close enough to f, and approximate IfI by our
construction above (j = 1). Given b divide the interval [a, b] into n + 1
equal intervals each of length ~b, where n = [(b - a)lb]. Then in each subin
terval (a', b') wherefchanges direction at least once or which is adjacent to
an interval where f changes direction, set hex) = O. Otherwise set hex) =
feb') - f(a')lb' - a'. Define g(x) = f(a) + J~ h(t) dt, then it is easy to see
that

and
Ilf- gil ~ (3r + 1) w(f, b)

II g' II ~ (2/b) w(f, b).

(12)

(13 )

Now define the Steklov transform IfI(X) = (lib) f~~~~~get) dt. By the
construction of g it folIows that l{I is comonotone with f Also by (12)

II!-ifill ~ II!-gil + w(f, 6)

,,;; (3r + 2) w(f, 6). (14 )
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Since IIf E C I [a, bI we may apply what we have already proved. Thus there
is a spline s E Y(k, 1) comonotone with IIf and therefore withfsuch that

lis -1If11 ~ Cc5w(IIf', c5).

Now

1If'(X) = (1/<5)[ g(x +<5/2) - g(x - <5/2) 1

so that

1I1If' II ~ (1/<5) w(g, (5)

~llg'll·

Combining (13) through (16) we thus get

Ilf- sll ~ [(3r + 2) +4C] w(f, <5)

and the proof is complete.
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